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Abstract

   Wavelet packet decomposition is used to
investigate the time-varying characteristics of
clinical EEG signals. On the basis of the
nonstationary nature of clinical EEG rhythms,
wavelet packet analysis is employed for designing
filters with different frequency characteristics to
detect 4 kinds of EEG rhythms. The coefficients of
wavelet transformation corresponding to the
rhythms are used to form the dynamic brain
electrical activity mapping (DBEAM). In order to
understand the dynamic rhythms of the EEG, some
clinical EEG are analyzed and compared. It is
indicated from the experimental results that the
dynamic characteristics of clinical brain electrical
activities can be provided in terms of wavelet
packet decomposition.

I. Introduction

  The brain is considered as the most complex
biological existent structure. Electroencephalography
(EEG) is the variations of electrical fields in the cortex
or on the surface of scalp caused by the physiological
activities of the brain. EEG is currently the most widely
adopted method for assessing brain activities. Detecting
the changes of these waves is critical for an
understanding of brain functions. Over the years, there
have been many modern methods such as CT, MRI
etc. coming into use, but EEG signal, as a
nondestructive testing method, is still play a very
important role in the diagnosis of brain function [1,2].
Since EEG was discovered by Hans Berger in 1929,
various digital signal processing techniques have been
widely applied to the analysis of clinical EEG signals.

As a common method, spectral analysis based on
Fourier analysis has been widely employed for the
standard quantitative analysis of the spectral
decomposition of EEG signals [2,3]. As we known, the
validity of the spectral analysis depends on the
hypothesis that the signals are stationary random
processes. In clinical practice, however, various
physiological changes can affect the properties of the
EEG processes, such as in the changes in the signal
statistical structure or the rhythms [4,5]. Thus, the
simplifying assumption of EEG stationary is not
satisfied with the clinical EEG due to various causes of
the spontaneous brain activity under different states of
the brain function, such as sleep stages, epilepto-genic
transients and the changes of the physiological state of
the patients. EEG signals turns out to be an extremely
nonstationary process.
  In recent years, modern signal processing techniques
allow us to pay more attention to the analysis of the
transients in EEG recordings. There have been some
attempts to automize the recognition of transients in
EEG signals, particularly some types of artifacts and
epileptogenic transients. However, automatic methods
generally do not stand comparison with traditional
visual EEG analysis by trained physicians. For this
purpose, this paper presents a new method for
effective analyzing the transient of the EEG rhythms by
using wavelet packet transformation. The time-
frequency characteristics of the spontaneous brain
rhythms are investigated, and the new techniques for
extracting time-varying rhythms of the processes are
developed. Moreover, the time-varying EEG rhythms
are employed to construct the Time-Varying Brain
Electrical Activity Mapping (TMBEAM), which will
enable physician to understand the changes of the
multi-channel brain activities for the specific rhythm in
order to study the transient of EEG signals. The
procedures proposed in this paper also provide a new
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way for investigating other kinds of biomedical signals.

II. Methods

A. Wavelet Packet Decomposition

   As a new method for investigating the time-
frequency distribution of the processes, wavelet
transform is a new two dimensional time-scale
processing method for analyzing nonstationary signals
[6,8-10]. Its main advantage is to provide simultaneous
information on frequency and time location of the
signal characteristics in terms of the representation of
the signal at multiple resolutions corresponding to
different time scales. Though wavelet has been widely
used in various areas in nonstationary signal
processing, many important problems still need further
research in wavelet theory and its applications.
Recently, wavelet packets have appeared as a powerful
tool to match the time-varying characteristics of some
engineering signals.

The wavelet packet analysis is generalized
orthogonal wavelet analysis. If scaling function φ( )t
can be defined as

φ φ( ) ( ) ( )t h k t k
k
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we can defined the wavelet function ψ( )t as
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The relationship above represents the two channel
quadrature mirror filter bank. Two analysis filters
divide frequency range into two halves. The filters are
orthogonal and the output signal is identical to the input.
This method is also known as the tree structured
perfect reconstruction filter banks. This procedure can
be repeated in a binary tree structure. The frequency

resolution of the analysis can be adjusted by choosing
an arbitrary tree structure. If the time series s n1( )  and
s n0 ( )  are further decomposed by using the equation
(3), the components of the time series s n( )
decomposed at different levels are obtained by
choosing an arbitrary tree structure. Obviously, the
bandwidth of the filter will cover a large frequency
span if the filters are near the root of the tree structure.
Different frequency resolution can be chosen in order
to match the characteristics of the EEG signals under
investigation. Fig. 1 shows the tiling representations of
two tree-based expansions. Fig.1 (a) represents the tree
structure of wavelet transformation, and Fig.1 (b)
describes the tree structure of one kind of wavelet
packet decomposition.

f

t

 (a)
f

t

(b)

Fig.1. Tiling representations of two tree-based expansions:
(a) wavelet transformation (b) wavelet packet
decomposition example.

B Detection of the Rhythms

    In order to detect the different kinds of EEG
rhythms, we can choose the best combination of
components for the representation of the EEG rhythms
in terms of the multi-resolution decomposition of the
signal based on the wavelet packets transformation.
According to the frequency band of 4 basic rhythms of
EEG signal, a particular choice of tree-structure
containing various components referred to as “wavelet
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packet decomposition” is employed to the time-varying
filter in 4 kinds of different filter banks corresponding
to 4 kinds of time-varying brain rhythms, such as beta
rhythm, alpha rhythm, theta rhythm and delta rhythm.
A six-levels decomposition of Daubechies wavelet is
applied to obtain 4 kinds of sub-band filters for the
decomposition of the EEG signals. Obviously, the
lowest frequency resolution of the decomposition can
be obtained as Hzff s 7812.02 7 ==∆ − . Thus, 4 kinds
basic rhythms can be approximately defined as: beta
rhythm (13.28-30.47Hz), alpha rhythm (7.81-13.28Hz),
theta rhythm (3.91-7.81Hz) and delta rhythm (0.78-
3.91Hz) [7]. In fact, the larger the level number for the
wavelet packet decomposition, the higher the frequency
resolution that can be performed for each basic
rhythm.

III. Results and Discussion

   Clinical EEG signals were digitally stored as data files
for further analysis via a personal computer. 14
channels analogy EEG signals were converted to digital
format through an A/D converter at a sampling rate of
125Hz from the international 10-20 system. All
electroencephalograph signals with 14 channels were
recorded at the location of the scalp known as: Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T5, T6
[7]. The EEG data acquisition were performed in an
acoustically and electrically shielded specialized room
where the subjects were comfortably in the bed. Each
EEG record was amplified and filtered by using a 1-50
Hz band-pass filter.
   The experimental results of EEG wavelet packet
decomposition are tested to indicate the satisfied
filtering characteristics of 4 brain rhythms. Fig.2
demonstrates the results of 4 kinds of time-varying
brain rhythms in terms of the wavelet packet
multiresolution decomposition of a typical seizure EEG
record when subjects with eyes closed. The transitions
of 4 kinds of rhythms are clearly indicated. By
comparing the original EEG record with 4 basic
rhythms, it can be seen that the seizure periods is
mainly in the alpha and the delta rhythms, while the
beta rhythm keep unchanged. Moreover, to indicate the
reasonable result of the decomposition, 4 kinds of
rhythms were used to reconstruct the EEG record,
which was compared with the original record, as
shown in Fig. 3.
   In order to demonstrate the time-varying
characteristics of different rhythms of multi-channel
EEG signals by using wavelet packet decomposition,
we propose a method to form the Dynamic Brain

Electrical Activity Mapping (DBEAM) to present the
dynamic EEG topography, which will enable physician
to understand the changes of all 14 channel brain
activities in a specific rhythm. For example, the alpha
rhythm transient often reflects the main changes of
brain electrical activity of the normal person. The time-
varying energies of event related to the brain rhythms
may be tracked by observing the DBEAM in terms of
the temporal variations of the squares of the
coefficients of the wavelet packet. The time location
and duration of each topographic brain mapping can be
adjusted easily depending on the transient
characteristics of the EEG signals observed. Fig.4
shows 14 typical channels EEG record with subjects’
eyes closed and open alternately. From the record, it
can be seen that the period with eyes open is from 9 to
27 seconds. Fig.5 demonstrates the DBEAM
constructed from the 14 channels EEG signals. The
EEG signal in each channel is divided into 12 periods
with 3 seconds in each period. The DBEAM in Fig. 5
shows the changes of alpha rhythm in the scalp in
every 3 seconds.

Conclusion

The experimental results illustrate how wavelet
packet can be applied to the EEG rhythms
decomposition with high time-frequency location
resolution and to forming the dynamic EEG
topography. Wavelet packet-based filter banks yield
superior performance to the commonly Daubechis
wavelet filter banks in EEG applications. The method
proposed in this paper is more flexible and accurate due
to the better matching in time-frequency characteristics
of EEG signal for extracting 4 kinds of EEG rhythms.
The results of DTBM has verified its superior
performances of the new algorithm by using wavelet
packet analysis.

Although the new applications of wavelet packet
in clinical EEG signal processing is addressed, open
problems still remain. One is the optimal segmentation
length resolution, which is obviously related to the
time-varying characteristics of the EEG signals
observed. It will be an interesting and challenging
research project to built an optimal segmentation-based
adaptive algorithm.
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Fig. 2 Four kinds of time-varying brain rhythms of a typical
EEG record with subjects at rest with eyes closed.

Fig .3 Comparing the original EEG record (top) with the signal

(bottom) reconstructed through the 4 kinds of rhythms shown in

Fig. 4  shows a typical 14 channels EEG record with

subjects’ eyes closed and open alternately. The period with

eyes open is from 9 to 27 seconds.

Fig. 5. The DBEAM constructed from the 14 channels EEG
signals. The EEG signal in each channel is divided into 12 periods
with 3 seconds in each period. The DBEAM shows the changes
of alpha rhythm in the scalp in every 3 seconds.
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